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1. Summary

When blood-feeding parasites increase seasonally, their
deleterious effects may prevent some host species, especially
those living in large groups where parasites are numerous,
from reproducing later in the summer. Yet the role of parasites
in regulating the length of a host’s breeding season—and
thus the host’s opportunity for multiple brooding—has not
been systematically investigated. The highly colonial cliff
swallow (Petrochelidon pyrrhonota), a temperate-latitude migratory
songbird in the western Great Plains, USA, typically has a
relatively short (eight to nine week) breeding season, with birds
rarely nesting late in the summer. Colonies at which ectoparasitic
swallow bugs (Oeciacus vicarius) were experimentally removed
by fumigation were over 45 times more likely to have birds
undertake a second round of nesting than were colonies exposed
to parasites. Late nesting approximately doubled the length of
the breeding season, with some birds raising two broods. Over a
27 year period the percentage of birds engaging in late nesting
each year increased at a colony site where parasites were removed
annually. This trend could not be explained by changes in group
size, climate or nesting phenology during the study. The results
suggest that ectoparasitism shortens the cliff swallow’s breeding
season and probably prevents many individuals from multiple
brooding. When this constraint is removed, selection may rapidly
favour late nesting.

2. Introduction

Blood-feeding ectoparasites often exert strong selective pressure
on their hosts and may affect the evolution of life-history
traits such as clutch size, immune investment and offspring
quality /quantity trade-offs [1-5]. A number of studies have
demonstrated negative effects of ectoparasites on nestling growth
and survival, especially in colonial hosts where grouping
enhances parasite transmission [6-11]. Ectoparasitism may also
affect the number of nesting attempts hosts are able to undertake,
particularly if infestations increase seasonally to the extent that
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breeding later—when more parasites are present—is often unsuccessful [12,13]. Ectoparasitism thus
could be one of the ecological drivers for the commonly observed seasonal decline in reproductive
success for many birds of temperate latitudes [14-18] and might serve to truncate the typical length
of the breeding season.

Surprisingly, little is known about how ectoparasites directly affect avian breeding phenology [1]. One
study showed that decisions to undertake second broods depended on the extent of parasitism at a site,
with birds at lightly infested sites more likely to nest again late in the season [12]. Ectoparasite loads can
also impair the productivity of second broods more than that of first broods, with this cost of parasitism
increasing over the breeding season [19]. However, because both the decision to nest a second time and
the success of late nestings can be affected by a number of environmental factors [16,17,20], determining
the role of ectoparasites independent of other effects can be difficult without experimental manipulation
of parasite abundance.

In this study, we take advantage of a long-term experiment, in which we annually removed
ectoparasitic swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarius) from cliff swallow colonies, to
investigate the potential role of ectoparasitism in regulating the length of the breeding season. These
deleterious blood-feeding parasites are known to affect many aspects of the cliff swallow’s social
behaviour and ecology [7,8,21,22]. Bugs increase at swallow colony sites over the summer, and thus the
seasonally increasing cost of parasitism might prevent birds from undertaking multiple nesting attempts
at infested sites. If swallow bugs represent a seasonal constraint on nesting time in cliff swallows, we
predicted that cliff swallows should lengthen the time spent breeding at sites where bugs were removed.

Our measure of breeding-season length was whether cliff swallows initiated late nesting at a colony
site. Late nesting was defined as a distinct second round of nesting activity (building nests and laying
eggs) at a colony site after nestlings had fledged there, generally leading to a doubling of the length of
time birds were present at a site. We investigated how the frequency of late nesting changed over a period
of more than 20 years at a parasite-free site and use the results to gain insight into how ectoparasites
potentially constrain the length of the cliff swallow’s breeding season and the number of breeding
attempts it makes.

3. Material and methods
3.1. Study area

We have studied cliff swallows since 1982 in the western Great Plains, USA, centred near the Cedar
Point Biological Station (41°13' N, 101°39’ W) in Keith County, southwestern Nebraska, along the North
and South Platte rivers and including portions of Deuel, Garden, Lincoln and Morrill counties [8]. Cliff
swallows construct gourd-shaped mud nests, often in dense, synchronously breeding colonies. In our
study area, the birds nest mostly on the sides of bridges, in box-shaped road culverts, or underneath
overhangs on the sides of cliffs [23]. Colony size varies widely; in our study area it ranges from 2 to 6000
nests (mean =+ s.e., 404 &= 13, n = 2318 colonies), with some birds nesting solitarily. The typical phenology
(in the absence of late nesting) is for cliff swallows to first arrive in southwestern Nebraska in mid to late
April, for most birds to have initiated egg laying by early June, and for nestlings to have mostly fledged
by mid-July. Cliff swallows spend the winter in northeastern Argentina, Uruguay and southwestern
Brazil [24], although the wintering range of our specific population is unknown.

Swallow bugs negatively affect nestling cliff swallow development and survival, lowering nestling
body mass, inducing anaemia, killing nestlings prior to fledging and increasing nutritional stress and
wing asymmetry among birds that fledge [7,8,13,25,26]. Experiments in colonies of different sizes have
shown that the effects of bugs are most severe in the largest colonies, where bugs are also the most
numerous [7,8], although these colony-size effects have diminished in recent years (C. R. Brown 2014,
unpublished data).

3.2. Fumigation and study colonies

Swallow bugs were removed from colonies by lightly misting the outside of all cliff swallow nests
and adjacent nesting substrate with a dilute solution of the insecticide Dibrom [7,8]. This chemical
works largely as a contact pesticide, although we use the term fumigation to describe parasite removal.
Nests were sprayed at 7 to 14 day intervals throughout the nesting season, typically beginning early
in the season after birds had initially settled at sites and continuing until nests were no longer active.
Dibrom is highly effective against swallow bugs [9], and even a single spraying can greatly reduce
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the number of bugs at a colony site for the entire season (C. R. Brown 2013, personal observation).
Other studies of avian ectoparasites have also used this insecticide [25,27]. Dibrom has little effect
on the other common haematophagous ectoparasite of cliff swallows in western Nebraska, the bird
flea (Siphontaptera: Ceratophyllidae: Ceratophyllus celsus), so by fumigating, we removed only swallow
bugs [8].

Fumigation of colonies began in 1984 and continued at some sites through to 2014. Some sites were
fumigated only in certain years, depending on the research question that required parasite removal.
Two colony sites, Whitetail and Junkyard, were fumigated each year of the study, beginning in 1984
and 1998, respectively. The fumigated sites were all concrete road culverts, and they did not differ
in physical attributes from other culvert sites occupied by cliff swallows in the study area. Non-
fumigated colony sites were those with no fumigation of any part and were situated on culverts,
bridges and buildings [23]. Only sites monitored by us throughout the summer and visited often enough
to know if late nesting occurred were included in these analyses. Colonies active from 1982 to 2014
were included.

Throughout this paper, a colony site refers to a physical structure at a particular locale where birds
nested, whereas a colony refers to a collection of individuals at a given site [23]. At any one time,
a site could contain only one colony, as the colony was a functional definition consisting of all birds
occupying a given site at a particular time. Colonies occurring at a given colony site in different years
were considered independent units of analysis, because colony size at a site and the birds resident there
often varied widely from year to year. However, to control for possible non-independence between years
brought about by site heterogeneity, we controlled for colony site by including it as a random effect in
mixed models.

3.3. Measuring late nesting, colony size and initiation date

We assessed whether late nesting occurred at a colony site each year by observing the birds’ presence
at the site after the early round of nesting had been completed (known by fledging of young from most
nests). When the birds’ presence at nests at a site after about 15 July suggested they might be nesting,
we checked nests for eggs using a dental mirror and flashlight inserted through a nest’s tubular mud
entrance. For many colonies, we ruled out any late nesting (without checking nests) whenever all birds
had vacated the site by 25 July (by which time most cliff swallows had migrated from the study area). Our
definition of late nesting as a temporally distinct second round of breeding at a site meant that all colonies
included in our analyses had to have been ones that were active during the early round of nesting in May
and June (the typical time when cliff swallows nest in the study area) and thus were available to have
a late round of nesting. Late nesting typically occurred in nests that had also been occupied in the early
round. The birds in the late round at a site had been there during the early round [28] and thus engaged in
true double-brooding. There was generally about a 45 to 50 day difference between the mean egg-laying
date for the early round at a site and the mean egg-laying date for the late round.

Annual colony sizes were based on first nesting attempts (the early round) and defined as the number
of active nests (ones with at least one egg laid) each year. Colony sizes were determined by direct counts
of all active nests, known from viewing nest contents, or by estimation based on nest counts of portions
of a colony site or from the number of birds present [8].

At Whitetail only, the number of nests active in the late round of nesting was determined each year by
either regularly checking all nests in late July and August or estimating the number of active nests from
the number of previously banded adults mist-netted at the site after 15 July. The number of late nests
was not available for some years. We did not attempt to estimate the number of nests in the late round at
any of the other colony sites, where we simply scored the presence or absence of late nesting.

We determined a given colony’s initiation date, by recording when the first cliff swallows were
observed at the site that year and remained daily thereafter [29]. We monitored colony sites for
arriving birds throughout the nesting season, and if initiation date could not be determined exactly
or estimated to the nearest 3days by virtue of our visit schedule, that colony was not included in
initiation-date analyses.

As a measure of the relative earliness of each nesting season across the study area independent
of a given site’s phenology, we used the annual date on which the first juvenile cliff swallow was
captured in a mist net (at any colony) in the course of our extensive mark-recapture programme [30,31]
conducted each year of the study (except 1982, 1983 and 2014) at 20-35 colonies annually. We netted
virtually daily throughout the season, and thus were likely to detect when the first juveniles fledged at
any site.
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3.4. Measuring body mass

As a measure of the quality and condition of individuals initially settling in different colonies, we used
the body mass of cliff swallows captured in mist nets at both fumigated and non-fumigated colony sites
throughout the study area. We restricted the analysis only to birds captured relatively early in the season
when a given colony was engaged in nest-building and egg laying. We thus standardized our body
masses temporally with respect to nesting stage, rather than date per se [8], given the wide variance in
when colonies initiate within a nesting season [29]. Birds were captured during the course of extensive
mark-recapture work [30,31], primarily in mist nets, and weighed to the nearest 0.5 g using a Pesola scale.
Sex of cliff swallows was determined using presence/absence of a brood patch or cloacal protuberance
[8]. From 1984 to 2013, we had body-mass measurements for 13287 birds in fumigated colonies and
29 254 birds in non-fumigated colonies. Masses were averaged for any individual caught more than once
per year during the designated nesting stage. Each individual was used only once—the year it was first
captured—in these analyses, and the same individuals were thus not represented in multiple years.

3.5. Palmer drought severity index

As an overall measure of annual climatic conditions during the study (and thus influences on the cliff
swallow’s aerial insect food), we used the modified Palmer drought severity index (PDSI) for Nebraska’s
Climate Division 7 (southwest Nebraska) available from the National Oceanic and Atmospheric
Administration (NOAA) at www.ncdc.noaa.gov/cag/time-series/. Division 7 encompasses the centre of
our study area, and the regional metrics should be broadly representative of climatic conditions the birds
experienced each season. The PDSI is a measure of drought intensity used by NOAA, and it integrates
both local temperature and rainfall data into a single index useful in describing soil moisture and extent
of runoff [32,33]. Lower values of the PDSI indicate more severe drought. Because cliff swallow colonies
are active primarily from May through to July, and thus are most likely to be affected by the climatic
environment at that time, we used three-month averages for May-July as determined by NOAA.

3.6. Statistical analyses

Logistic mixed models were constructed in SAS [34] using Proc GLIMMIX. This allowed specification
of colony site as a random effect, with the categorical-dependent variable being whether a colony site
exhibited late nesting. Fixed effects were fumigation status (yes/no, categorical), year, colony size, colony
initiation date, date of first juvenile capture and PDSI. Multiple regression of the extent of late nesting
each year at Whitetail was performed using Proc GLM in SAS. Body mass of birds in fumigated and
non-fumigated colonies was compared with Proc MIXED in SAS, with colony site as a random effect and
with fixed effects being whether a site was fumigated, colony size, sex and year.

4, Results

Of 1183 non-fumigated colonies, 19 (1.6%) had late nesting activity, compared with 49 (75.4%) of 65
fumigated colonies. Using 636 colonies and controlling for colony site as a random effect, only fumigation
status of a colony (yes/no) was a significant predictor of whether late nesting occurred (F; 548 =5.24,
p=0.022). Colony size (Fy548 =0.03, p=0.86), colony initiation date (Fjs548 =0.41, p=0.52), date of
first juvenile capture (F1 548 = 0.10, p = 0.75), year (F1 504 = 0.36, p = 0.55) and annual PDSI (F1 504 = 0.26,
p =0.61) were not significant predictors of the presence or absence of late nesting. When the analysis
was re-run with an additional 612 colonies (that did not have known initiation dates or were from
3 years without first juvenile capture dates), the results were similar (for fumigation status, Fy 1131 = 5.15,
p=0.023; p > 0.55 for all others). Colony size, colony initiation date, first juvenile capture date, year
and PDSI also had no significant effect on whether colonies exhibited late nesting when fumigated and
non-fumigated colonies were analysed separately (p > 0.59 for each).

For Whitetail, the percentage of first-round nests that were re-occupied for late nesting increased
significantly over time (figure 1), varying from 2.1% in 1986 to a high of 16.7% in 2007. Only year
was a significant predictor of the percentage of nests re-occupied for late nesting (F1,15 =31.6, p < 0.001,
B =0.49), with Whitetail colony initiation date (F,15 =0.08, p =0.79), annual first juvenile capture date
in the study area (F1,15 =0.0, p=0.99), Whitetail colony size (Fj15=0.46, p=0.51) and annual PDSI
(F1,15=0.94, p=0.35) not explaining any significant variation. Results were similar when colony
initiation date and first juvenile capture date were removed from the model.
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Figure 1. Percentage of cliff swallow nests in the first round of nesting that were active in the second round at a fumigated colony
(Whitetail) each year that late nesting occurred. Percentage increased significantly with year (r; = 0.89, p < 0.0001, n = 18 years).
Line indicates best-fit least-squares regression. Numbers by dots indicate colony size (approximate number of nests in first round).

When controlling for colony site as a random effect, body mass of cliff swallows soon after
initial settlement varied significantly with sex (F1,~42000 = 1621, p < 0.0001) and year (F27,~42000 = 76.9,
p < 0.0001) but did not vary with a site’s fumigation status (F1,~42000 = 2.36, p = 0.12) or with colony size
(F1,~42000 = 0.86, p = 0.35). Similar results were obtained when each year was analysed separately: in only
2 years (2006, 1997) was fumigation status a significant predictor of body mass (8 = —1.26 and —1.99,
p=0.02 and 0.002, respectively), and in the other 25 years fumigation status was not significant (p > 0.11
on all). For Whitetail, mean body mass of birds at settlement each year did not change significantly over
time (rs = —0.05, p = 0.82, n = 26 years).

5. Discussion

The extent of ectoparasitism by swallow bugs was clearly associated with the length of the breeding
season in cliff swallows of western Nebraska. Colonies with parasite removal via fumigation were over
45 times more likely to have a round of late nesting (and thus a nesting season approximately doubled in
length) than were colonies with typical numbers of swallow bugs. Late nesting was unrelated to colony
size, phenology of the nesting season or climatic conditions in a given year. That late nesting in Nebraska
cliff swallows can be successful and confers potentially higher lifetime fitness than raising only an early
single brood [28] suggests that the regular presence of ectoparasites in colonies under natural conditions
shortens the birds’ nesting season and prevents some individuals from attempting multiple broods.

Our experimental parasite removal establishes the absence of swallow bugs as a causal factor in the
initiation of late nesting in cliff swallows. We were able to rule out other possibilities that might have
contributed to the observed results. For example, local resources (e.g. the birds’ food) could change over
time [20], or earlier breeding times in cliff swallows, brought about by responses to increasing drought
severity [29], might allow these birds more time in the summer to complete late nesting. However,
in either case, we should have seen an effect of year and/or PDSI on the incidence of late nesting at
both fumigated and non-fumigated sites, which we did not. Late nesting also seemed unrelated to local
phenology (i.e. colony initiation date).

Could the increased late nesting at fumigated sites reflect non-random sorting of high-quality
individuals into those colonies? If so, those individuals might have been more capable of nesting late
by virtue of their superior condition. The body masses of cliff swallows soon after settlement in colonies
do not support this scenario: individual quality or condition, at least as measured by body mass [8], did
not differ between fumigated and non-fumigated sites. In addition, colony size itself had no effect on the
incidence of late nesting, suggesting that all individuals regardless of their colony-size propensity [35]
were equally likely or unlikely to engage in late nesting. Furthermore, because fumigation of a site each
year did not begin until after individuals had settled, it is unlikely that individuals had the opportunity
to choose their colony (and thus assort) based on whether a site was being fumigated that year. Even at
a perennially fumigated site (Whitetail), there was no evidence that the quality of the residents there (as
measured by body mass) changed over time as more birds engaged in late nesting.
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Cliff swallows’ responding to ectoparasites by avoiding late nesting is perhaps not surprising, given
the highly deleterious effects of swallow bugs and the other ways cliff swallows adjust their behaviour to
bug infestations [7,8,21,25]. Many nests in our study area are so infested with bugs by the time nestlings
fledge that neither the adults nor the juveniles ever return to the nests (C. Brown 1984-2014, personal
observation), and at these sites the lack of late nesting is not surprising. By contrast, at fumigated sites,
parents often lead the juveniles back to the nest to sleep at night for several days after fledging, and the
adults themselves (even those who do not attempt late nesting) sit in the empty nests for long periods
after the juveniles have permanently vacated the site [36]. In Oklahoma, severe ectoparasite infestations
caused entire colonies to abandon nesting sites [13].

While the much greater frequency of late nesting at fumigated colonies compared with non-fumigated
ones was striking, perhaps even more surprising was the increase in the extent of late nesting over time
at one site (figure 1). This trend could not be explained by changes in breeding phenology, climate
or social environment (i.e. colony size). Because late nesting is often perpetrated largely by previous
nesters who thus augment their annual reproductive success, the increase over time suggests potential
selection for individuals that double-brood. This is supported by brood-size and survival analyses of
breeding adults and offspring from early and late nests, which indicate that late nesters have at least
equivalent (and perhaps greater) lifetime fitness as those birds that rear only an early brood [28].
However, despite the potential advantages to rearing a second brood, only a relatively small percentage
of birds nested late even at fumigated sites such as Whitetail. Other costs of late nesting (e.g. declining
food availability, delayed start of autumn migration) independent of ectoparasitism may prevent some
individuals from double-brooding, particularly for those who are not among the earliest birds to arrive
in the spring [28].

This study demonstrates perhaps the strongest effect yet of a blood-sucking ectoparasite on the length
of its host’s breeding season and on the host’s ability to undertake multiple broods. Our results suggest
that parasitism may be an overlooked factor contributing to the wide variability both among and within
species in propensity to double-brood in a given year [37-43]. In the case of cliff swallows, their extreme
degree of coloniality probably exacerbates the shortened nesting season imposed by parasites because the
birds are exposed to such large numbers of swallow bugs by virtue of their large group sizes. This could
be one reason why the less social but ecologically similar barn swallow often produces multiple broods
in a season in North America [44,45], while the more colonial cliff swallow does not [24]. In geographical
areas where swallow bugs are less numerous, multiple brooding should be more common, which appears
to be the case [46]. Our experimental results suggest that cliff swallows have a strong degree of plasticity
in breeding phenology and that some individuals have the capacity to respond quickly to an absence
of parasites.
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