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Abstract Survival is a key component of fitness. Species that occupy discrete breeding

colonies with different characteristics are often exposed to varying costs and benefits

associated with group size or environmental conditions, and survival is an integrative net

measure of these effects. We investigated the extent to which survival probability of adult

(C1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies

resembled that of their parental cohort and thus whether the natal colony had long-term

effects on individuals. Individuals were cross-fostered between colonies soon after

hatching and their presence as breeders monitored at colonies in the western Nebraska

study area for the subsequent decade. Colony-specific adult survival probabilities of off-

spring born and reared in the same colony, and those cross-fostered away from their natal

colony soon after birth, were positively and significantly related to subsequent adult sur-

vival of the parental cohort from the natal colony. This result held when controlling for the

effect of natal colony size and the age composition of the parental cohort. In contrast,

colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of

their foster parent cohort or to the cohort of non-fostered offspring with whom they were

reared. Adult survival at a colony varied inversely with fecundity, as measured by mean

brood size, providing evidence for a survival–fecundity trade-off in this species. The

results suggest some heritable variation in adult survival, likely maintained by negative

correlations between fitness components. The study provides additional evidence that

colonies represent non-random collections of individuals.
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Introduction

Annual survival, as reflected in breeding lifespan, is one of the major components of

individual fitness in natural populations (Roff 1992; Stearns 1992), especially among

iteroparous organisms. In birds, lifespan often contributes more to differences in individual

fitness than fecundity (Clutton-Brock 1988; Newton 1989), and survivorship may be the

best single surrogate for fitness among organisms in general (Pfister 1998; Crone 2001).

Understanding the factors that promote variation in survival is thus important in making

inferences about potential selection pressures and consequent evolutionary responses.

In colonial animals that are often distributed unevenly across a landscape at discrete

breeding sites, one potentially important determinant of survival (and thus of fitness) is the

colony occupied. Colonies may differ in size, physical environment for nesting, local food

availability, the phenotypic composition of the residents breeding there, or in other ways

that influence fitness (Wittenberger and Hunt 1985; Siegel-Causey and Kharitonov 1990;

Brown and Brown 2001). Survival is an integrative measure of the different costs and

benefits of coloniality, most of which are measured in different currencies (e.g., likelihood

of predation vs. food intake rates) and may vary widely across, for example, colonies of

different sizes (Brown and Brown 1996, 2004). Thus, understanding how and why survival

varies among groups of individuals occupying different sites is key if we are to identify the

selective advantages of group living.

Like other traits strongly associated with fitness, survival often has been shown to have

low heritability (Gustafsson 1986; Mousseau and Roff 1987; Campbell 1997; Merilä and

Sheldon 1999; Papaı̈x et al. 2010). This result is assumed to reflect reduced additive

genetic variance for traits under strong selection and at evolutionary equilibrium (Barton

and Turelli 1989; Price and Schluter 1991). However, various factors can, at least in

theory, maintain moderate levels of additive genetic variance for fitness-related traits,

including polygenic mutation, spatiotemporally fluctuating selection, and negative corre-

lations between fitness components (Mousseau and Roff 1987; Fuiman and Cowan 2003;

Coltman et al. 2005; Vehviläinen et al. 2008). Perhaps as a result, some empirical studies

have provided evidence that survival can have a moderately high heritability and thus be

subject to selection (Chambers et al. 1996; Campbell 1997; Kenway et al. 2006; Blomquist

2010; Dégremont et al. 2010).

In this study, we examine the extent to which the colony an individual was born in

influences its later survival as an adult. The cliff swallow (Petrochelidon pyrrhonota) is a

colonially nesting songbird that occupies colonies that range from a few to thousands of

nests at a single site (Brown et al. 2013a). Many of the costs and benefits of coloniality

vary with group size in cliff swallows (Brown and Brown 1996, 2004), as in other species

(Hoogland and Sherman 1976; Snapp 1976; Hoogland 1981; Wiklund and Andersson

1994; Serrano et al. 2005; Spottiswoode 2009). However, for both cliff swallows and other

colonial animals we still know relatively little about how annual survival varies with

colony size or with other characteristics of breeding sites independent of group size. For

example, when inexperienced or inferior individuals colonize some sites or when birds

settle in areas with reduced food availability or high ectoparasite load (Robinson 1985;

Loye and Carroll 1991; Brown et al. 2014; Hoi et al. 2014), their offspring may be

disadvantaged through inadequate provisioning, and this could lead to long-term negative

effects on them as adults (Loison et al. 1996; Hastings and Testa 1998; Rose et al. 1998).

We take advantage of a cross-fostering study of cliff swallows (Brown and Brown 2000;

Roche et al. 2011), in which nestlings were switched between colony sites soon after
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hatching and their survivorship and colony choice monitored throughout their lives. This

allowed us to examine survival of both the birds born and reared at their natal site and

those reared elsewhere, and determine, at a colony-specific level, whether there was par-

ent–offspring resemblance in survival probabilities. We focused on adult survival—that is,

for birds after they attained 1 year of age—and thus compared parental and offspring

generations at the same life stage. By measuring survival only as adults, we also removed

any confounding natal dispersal biases (Brown and Brown 1992) or other effects such as

ectoparasite load known to influence first-year (juvenile) survival (Brown and Brown 1986,

1996). In addition to investigating parent–offspring resemblance in survival, we examined

how any systematic differences in survival might be maintained by a survival–fecundity

trade-off. The results offer insight into causes of variation in this fitness component across

colonies and the extent to which adult survival might be heritable.

Methods

Study population

We have studied cliff swallows since 1982 in the western Great Plains, USA, in a study

area of 200 9 50 km, centered near the Cedar Point Biological Station (41�130N,
101�390W) in Keith County, western Nebraska, along the North and South Platte rivers and

including portions of Deuel, Garden, Lincoln, and Morrill counties (Brown and Brown

1996). Cliff swallows construct gourd-shaped mud nests, often in dense, synchronously

breeding colonies. In our study area the birds nest mostly on the sides of bridges, in box-

shaped road culverts, or underneath overhangs on the sides of cliffs (Brown et al. 2013a). A

colony was defined as groups of nests whose owners at least occasionally interacted during

foraging or in alarm responses at predators, and typically all nests on a given bridge or

culvert were considered a single colony (Brown and Brown 1996). Each colony was

usually separated from the next nearest by 1–10 km. Colony size varies widely; in our

study area it ranges from 2 to 6000 nests (mean ± SE, 404 ± 13, n = 2318 colonies), with

some birds nesting solitarily. Cliff swallows in Nebraska typically lay 3–4 eggs and usually

rear a single brood (Brown and Brown 1996, 2015). The breeding season generally extends

from early May to late July. The birds are migratory and spend the winter in northeastern

Argentina, Uruguay, and southwestern Brazil (Brown and Brown 1995), although the

wintering range of our specific population is unknown.

Cross-fostering study

In 1997 and 1998, we performed a partial cross-fostering experiment in which we ex-

changed newly hatched chicks with similarly aged chicks in colonies of different sizes. At

relatively small colonies, a subset of nestlings was transported to nests with similarly aged

broods at relatively large colonies, where they were exchanged with nestlings that were

reciprocally moved to the nests in the small colonies (Brown and Brown 2000). We

ensured that cross-fostered nestlings were reared in broods of the same size in which they

had hatched. Nestlings were fostered at approximately 5 days of age, the youngest age at

which cliff swallows can be banded (with US Fish and Wildlife Service bands) for per-

manent identification (Brown and Brown 2000). The spatial distribution of the colony sites

used in the cross-fostering study is shown in Roche et al. (2011).
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The cross-fostering design of this study had several inherent advantages. By directly

comparing rearing groups that either (1) shared the same birth colony but were reared apart or

(2) were both born and reared in the same natal colony, we avoided statistical problems

associated with regression-to-the-mean that potentially affects strictly observational studies

of parent–offspring resemblance (Kelly and Price 2005). Also, by comparing birds born but

reared in a different colony to ones born and reared in the same colony, any effect of

uncertainty in parentage (e.g., extra-pair paternity resulting from birds perhaps being sired by

non-residents of a colony; Brown and Brown 1996) was the same among the rearing groups

being compared and thus did not affect our results. Finally, because the groups being com-

pared encountered the same spatial array of colony sites to choose among in subsequent years,

differences between rearing groups could not reflect varying subsets of colonies to which the

groups were exposed or differences in dispersal distances as adults (see Results).

Field methods

We monitored the survival of cliff swallows each year through 2013 via systematic mist-

netting at 25–40 colony sites per season (Brown and Brown 2004; Roche et al. 2013). Birds

were captured by putting nets across the entrances of highway culverts or along the sides of

bridges that contained swallow colonies. Swallows were caught as they exited their nests.

We rotated among the accessible colonies, netting at each several times each season. The

capture of birds is described in detail by Brown (1998), Brown and Brown (2004) and

Roche et al. (2013). No birds from the cross-fostering cohorts were detected after 2008;

thus, we assumed that we followed these individuals for their entire lives.

Brood sizes at each colony in the cross-fostering study were recorded at the time we

selected nests for fostering and included some nests not chosen because brood sizes did not

match those at foster colonies. Brood size refers only to the number of nestlings found in

nests prior to fostering, that is, at about 5 days of age. Here we use data on brood sizes only

for the colonies in the 1997–1998 cross-fostering study, and we did not know subsequent

brood sizes for any of the nestlings in that study as adults.

Colony size was the number of active nests at a site, determined by checking nest

contents and scoring any nest with C1 egg or nestling as active (Brown and Brown 1996).

We quantified the relative age compositions of the breeders in the colonies in the cross-

fostering study using mark-recapture as described by Brown et al. (2014). The number of

newly banded adults at a site in a year served as a relative index of the number of yearling

breeders. Many of the unbanded adults in our study population each year were first-year

birds (Brown et al. 2014). We used the percentage of first-year breeders at a colony as a

relative index of parental age among the colonies in the cross-fostering study.

To examine whether fostered and non-fostered adults may have dispersed to breed at dif-

ferent distances relative to their rearing sites (and thus affected apparent-survival estimation),

we calculated settlement distances for the 414 birds from the cross-fostering study that were

caught at least once in their secondyear as a breeder orbeyond.The linear distance inkilometers

between the colony sitewhere a birdwas reared and the site chosen as a breederwas determined

from aerial maps. For birds caught in multiple years as adults from the second year or beyond,

only the first site for each individual during this period was used in the analysis.

Mark-recapture analysis

For each nestling in the cross-fostering experiment, we created a capture history that

indicated whether the bird was encountered (captured) as an adult somewhere in the study
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area each year. Capture histories for nestlings began in the first year as an adult. Birds

banded as a nestling but never encountered again were excluded; thus, this analysis was

restricted to adult (breeder) survival only. Breeding adults in the cross-fostering colonies

were given capture histories beginning in those years. This enabled us to compare adult

survival probabilities of the cross-fostered nestlings to that of the adults (i.e., their parental

cohort) occupying both the birth and foster colonies of the nestlings and ensured that

survival was estimated for the parental and offspring generations at the same life stage

(from C1-year of age for all).

Because we did not know the identities of the parents of the cross-fostered nestlings

(parents were not known for specific nests), we estimated colony-specific, cohort-level

survival for all adults occupying each colony in the cross-fostering experiment. We also

estimated the equivalent colony-specific survival for three groups: (A) nestlings born and

reared at their birth colony (i.e., those not fostered); (B) nestlings from a given birth colony

fostered (and reared) elsewhere; and (C) nestlings from elsewhere fostered into (and

reared) at a given foster colony. Sample sizes of birds caught beyond their first year (as

adults) were too small to make finer divisions in the dataset and still achieve colony-

specific survival estimates. The total number of birds used for estimating survival for group

A ranged from 14 to 331 per colony; for group B, 15 to 323 per colony; and for group C, 34

to 326 per colony. The number of individuals in the parental cohort at a colony ranged

from 13 to 2649. The total number of colonies for which parental cohort survival and

survival for at least two of groups A, B, or C could be estimated was 10. One colony had

too few recaptures of group C, and another of group A, for estimating survival. Two colony

sites were used in the cross-fostering in both 1997 and 1998, and these were treated as

independent colonies each year, owing to differences in colony size and residents present

among years (Brown et al. 2014). Although we had additional colonies (in earlier years)

not part of the cross-fostering study for which adult survival was measured, we chose not to

include those due to pronounced annual variability in survival for our population (Brown

and Brown 1996). Using only the 1997–1998 cohorts meant that survival for all birds was

measured over the same set of annual conditions and did not include the effects of a severe

weather-related mortality event that occurred in 1996 (Brown and Brown 1998).

The package RMark in program R (Laake 2013; R Core team 2014) was used to create

models and generate estimates of survival probabilities. We were interested in directly

comparing colony-specific adult survival for groups of nestlings and their parental cohorts

over the same time period, so we used the same model structure for each cohort-level

survival estimate. For each of the three groups (A, B, C), we constructed a ‘‘full’’ model in

which apparent survival (u) was parameterized with an additive effect of swallow age (i.e.,

first-year or older than first-year) and interactions of initial banding year, colony, and in the

case of the offspring analyses, whether or not an individual was fostered. Sample sizes for

colony-specific survival were not sufficient for modelling time-dependent survival or age

beyond two age classes (\1 and C1 year), so we used a model that estimated survival as

constant across years within the adult (C1 year) age class. This yielded average survival

for each colony-specific cohort and allowed us to compare relative survival among groups.

Recapture probability was modelled as fully time-dependent [i.e., a unique detection

probability was estimated for each year of the analysis; see Roche et al. (2013)] but,

because of sample size, did not vary with group, age, or colony.

Because this study focused only on survival, we did not investigate or attempt to model

colony choice by these cohorts; this topic is extensively investigated elsewhere (Roche

et al. 2011). Colony-specific sample sizes were not sufficient to examine the effect of

breeding colony size on survival using multi-state models for birds beyond the first year,

Evol Ecol (2015) 29:537–550 541

123



and thus we were forced to assume in our analyses that breeding colony size beyond the

first year does not affect adult survival. We examined only the effect of birth and foster

colony sizes. Analyses did not incorporate an effect of sex, as we earlier found that models

with sex as a covariate were a poorer fit to this dataset than models without sex (Roche

et al. 2011).

Multiple regression analyses using colony-specific survival probabilities, as estimated

from program MARK, were performed in SAS using Proc GLM (SAS Institute 2004).

Results

The colony-specific adult survival probability for nestling cliff swallows born and reared in

the same colony varied directly with the colony-specific survival probability of the adults

in that colony (the parental cohort; Fig. 1a), with parental-cohort survival (b = 0.704,

SE = 0.249, P = 0.030) and natal colony size (b = 0.001, SE = 0.000, P = 0.030) being

significant predictors of offspring survival as adults. A similar result held for nestlings

from a given colony that were fostered and reared elsewhere: adult survival of these birds

(Fig. 1b) also varied significantly with survival of the parental cohort from their birth

colony (b = 1.245, SE = 0.412, P = 0.019). Colony size of the birth colony had no

influence on adult survival of the birds fostered from that colony (b = 0.000, SE = 0.000,

P = 0.29).

In contrast, the colony-specific adult survival probability of birds born elsewhere and

fostered into a colony was not significantly related to either the survival of their foster-

parent cohort (Fig. 2a; b = -0.281, SE = 0.695, P = 0.70) or the size of the colony to

which they were fostered (b = 0.000, SE = 0.000, P = 0.78). Adult survival of fostered

nestlings was also unrelated to the colony-specific adult survival probability of non-fos-

tered nestlings with whom they were reared (i.e., nestlings born and reared in the foster

colony; Fig. 2b, b = -0.432, SE = 0.683, P = 0.55).

A negative relationship existed between a colony’s average brood size and subsequent

parental-cohort survival per colony (Fig. 3). Subsequent adult survival was significantly

predicted by mean brood size in 1997–1998 (b = -0.184, SE = 0.041, P = 0.003), in-

dependent of colony size in those years (b = 0.000, SE = 0.000, P = 0.29).

While the percentage of age-1 breeders ranged from 30.8 to 83.3 % among the 10

colonies used in the cross-fostering study, parental cohort survival did not vary sig-

nificantly with either the percentage of age-1 breeders at the site (b = -0.089,

SE = 0.138, P = 0.54) or with colony size during the cross-fostering years (b = 0.000,

SE = 0.000, P = 0.98). The multiple regression coefficients for the effect of parental

cohort and colony size on offspring survival, and the effect of mean brood size on parental-

cohort survival (above), remained the same in direction and significance (P\ 0.05) when

the percentage of age-1 breeders in the natal (birth) colony or in the foster colony was

included in each analysis.

Cross-fostering per se had no effect on colony-specific adult survival of cliff swallows:

average survival (±SE) for fostered offspring was 0.634 (±0.0329) and for non-fostered

offspring, 0.636 (±0.0224). Settlement distances for C2-year old birds relative to their

rearing site also did not differ. Fostered offspring (n = 207) settled at colonies a mean

(±SE) 2.87 (±0.37) km (range 0.0–42.8 km) from their rearing site, versus 2.96 (±0.45)

km (range 0.0–57.5 km) for non-fostered offspring; the difference was not significant

(Z = -1.20, P = 0.23, Wilcoxon test).
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Discussion

These results show strong parent–offspring resemblance in adult survival for cliff swal-

lows. The variation in survival across sites suggests that an individual’s expected lifespan

can be determined in large part by birth colony. A strength of this analysis is that survival

was measured for both parental and offspring cohorts at the same life stage (survival for

those reaching 1 year of age) and during the same years, the latter an important consid-

eration given the annual variation in cliff swallow survival probabilities in our study area

(Brown and Brown 1996).

Variation in offspring survival can sometimes reflect maternal effects that are mediated

through parental provisioning, hormone allocation, or vertical antibody transmission, and

these often vary with the mother’s age (Bernardo 1996; Hastings and Testa 1998;

Mousseau and Fox 1998; Lindström 1999; Spencer and Verhulst 2007). However, most

reported maternal effects on survival are relatively short term, usually most apparent either

immediately post-natal or expressed over the first year or less of the offspring’s life (Kern

et al. 2007; Räsänen and Kruuk 2007; Reed et al. 2009; reviewed in Bernardo 1996).

Longer-term maternal effects appear rare in birds and have been documented mostly in
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Fig. 1 Colony-specific cliff
swallow annual adult survival
(±SE) over all years, 1998–2008,
for a nestling cohorts reared in
their birth colony and b nestling
cohorts from a given birth colony
fostered to and reared in other
colonies, in relation to colony-
specific adult survival probability
(±SE) of the parental cohort
from that birth colony. Line
indicates best-fit least-squared
regression
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polygynous mammals where early maternal provisioning is important especially for sons

(Loison et al. 1996; Post et al. 1997; Rose et al. 1998). Because cliff swallows are socially

monogamous and sexually monomorphic, our results were probably not caused by the
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Fig. 2 Colony-specific cliff
swallow annual adult survival
(±SE) over all years, 1998–2008,
for nestling cohorts reared in a
given foster colony in relation to
a the colony-specific adult
survival probability (±SE) of the
parental cohort from that foster
colony and b the colony-specific
adult survival probability (±SE)
of the non-fostered cohort from
that colony with whom the foster
offspring were reared. Line
indicates best-fit least-squared
regression
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Fig. 3 Colony-specific cliff
swallow annual adult survival
(±SE) over all years, 1998–2008,
for parental cohorts from the
cross-fostering colonies in
relation to mean brood size for
each colony in 1997–1998 (±SE;
number of nestlings surviving to
5 days of age). Survival was
estimated beginning in the year
that brood size was measured.
Line indicates best-fit least-
squared regression
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same kind of long-term maternal effects seen in polygynous species. In addition, more

general parental age effects are unlikely, as we found no evidence that the age composi-

tions of the colonies in this study varied enough to systematically affect adult survival of

either the parental or offspring cohorts.

We used colony-specific cohort survival estimates in this study because we did not

know the individual identities of the parents of the cross-fostered nestlings. Thus, our data

do not allow calculation of heritability of survival in the strict sense. However, the nests

included in the cross-fostering study were a random sample of those present at each site

and should be broadly representative of all parents and offspring from a colony. Given this,

the strong direct relationship between cohort-level adult survival probabilities of fostered

nestlings and the breeding adults in their birth colony—but no such relationship with the

breeding adults in their foster colony—implies a heritable basis for adult survival in cliff

swallows. While significant heritabilities for survival have been reported in a few organ-

isms (Chambers et al. 1996; Campbell 1997; Kenway et al. 2006; Blomquist 2010;

Dégremont et al. 2010), these are the first data for a colonial species suggesting heritable

parent–offspring resemblance in survival.

Trade-offs and sorting among colonies

Mechanisms maintaining additive genetic variance in traits that are strongly related to

fitness (such as survival) are unclear (Barton and Turelli 1989; Price and Schluter 1991;

Merilä and Sheldon 1999; Vehviläinen et al. 2008). One obvious possibility for cliff

swallows, suggested by our data, is that annual survival and annual fecundity represent a

multiple-trait trade-off. As annual fecundity as measured by mean brood size at a site

increased, survival of breeding adults at that site declined. Survival–fecundity trade-offs

have been investigated in many species (Stearns 1992), although compelling evidence for

their existence within species remains surprisingly sparse (Fry 2003; Agrawal et al. 2010).

Many studies have found either no relationship or positive correlations between survival

and fecundity within populations (e.g., Smith 1981; Newton 1989; Waser and Jones 1991;

Blondel et al. 1992), including in some swallows (De Steven 1980; Murphy et al. 2000; cf.

Bryant 1979). While positive or non-correlations do not rule out a survival–fecundity

trade-off, a negative correlation such as that reported here provides excellent evidence for a

trade-off (Agrawal et al. 2010). Thus, additive genetic variation for survival in cliff

swallows could be maintained, in part, because individuals vary in their fecundity and

because adult survival costs are determined by brood size. That fecundity varied enough

across sites to generate this trade-off is perhaps surprising, given the low variation in clutch

size in this species: 80 % of cliff swallow nests contain 3–4 eggs, and clutch size does not

systematically vary with colony size (Brown and Brown 1996). This suggests that most of

the site-related variation in fecundity is related to differences among parents in the number

of offspring surviving after hatching.

The long-term parent–offspring resemblance in adult survival per colony suggests two

questions: (1) do individuals invest proportionately more or less in survival (vs. fecundity)

in the same way as do their parents, and (2) do individuals sort among colonies on this

basis. We do not have information to evaluate the former possibility, as the reproductive

success of the cross-fostered birds as adults was not monitored. However, the results are

consistent with other analyses suggesting that cliff swallow colonies represent non-random

sorting of individuals among groups (Brown and Brown 1996, 2000; Brown et al. 2014),

based on how the costs and benefits of group-living vary among sites. For example,

ectoparasite load, risk of starvation, predation, and foraging efficiency vary among
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colonies, often in relation to colony size, and all could influence individual performance at

a site (Brown et al. 1995; Brown and Brown 1996, 1999, 2004). Whereas previous work

has mostly focused on determining how individuals sort among groups based on age,

hormonal ability to handle stress, or parasite resistance (Brown and Brown 1996; Brown

et al. 2005, 2014), this study suggests that individuals might also sort based on life-history

strategy.

The two colonies with the lowest adult survival estimates and highest mean brood sizes

were also the two sites that were the least perennially occupied of the 10 cliff swallow

colony sites in this study (Brown, unpubl. data). Some colony sites are used by birds

annually, whereas others are occupied in only some years (Brown et al. 2013a). Sites that

are attractive to cliff swallows only occasionally (perhaps owing to temporary local

abundance of food; Brown et al. 2002) might draw birds predisposed to invest more than

average in fecundity. Consistent life-history differences were found in another colonial

bird, the sociable weaver (Philetairus socius), in which individuals occupying different

sized colonies invested unequally in egg size and immune defense (Spottiswoode 2007)

and showed differences in adult survival (Brown et al. 2003).

Another possibility is that ecological differences among sites (e.g., in parasite load or

local food availability; Brown and Brown 1996) simply allow cliff swallows at some

colonies to be more successful (have greater brood sizes). When they are more successful,

adult survival may be impaired strictly as a costly consequence of raising larger broods.

However, unless birds predictably choose colonies solely based on a site’s ecological

potential for individual fecundity, this scenario seems less likely given that birds exhibited

the same survival (and thus presumably the same fecundity) over their lifetimes as their

parental cohort. In sociable weavers, experiments that manipulated colony resources

showed that individuals did not exhibit plastic responses to local conditions, suggesting

sorting among groups based on individuals’ inherent life-history predispositions (Spot-

tiswoode 2009). Regardless of mechanism, the observed trade-off between survival and

fecundity suggests that fitness is not necessarily lower for birds (and their offspring)

occupying the sites with lower adult survival.

Colony size and fluctuating selection

Could the patterns of survival detected here be related to systematic differences among

birds in their choice of colony size? The extent to which breeding-colony size affects adult

cliff swallow survival is unknown, although formal analyses of the effect of colony size on

breeder survival are underway using a larger (non-experimental) data set. This same cross-

fostering study illustrated earlier that cliff swallows have heritable colony-size preferences

during their first breeding season (Brown and Brown 2000), such that individuals irre-

spective of where reared return to breed in colonies matching their birth colony size. If

these preferences are retained throughout their lives, the results here on adult survival

could reflect perennial sorting of individuals based on colony size and survival being

affected by colony size in predictable ways.

However, we have found that the strong colony-size preferences shown by birds in their

first year break down over time, with individuals increasingly less likely to use colony sizes

similar to those of their birth as they get older (Roche et al. 2011), instead perhaps relying

more on experience with a particular site (Brown et al. 2008). Thus, without permanent

sorting of individuals among colony sizes, it seems unlikely that breeding-colony size

alone can account for the strong parent–offspring resemblance in adult survival seen in this

study. This result is all the more striking because both the parental and offspring cohorts
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were distributed among many different colony sizes in the years during which adult sur-

vival was measured (Roche et al. 2011). Furthermore, if differences in survival are pre-

dictably linked to particular colony sizes without a survival–fecundity trade-off, the group

sizes with lower survival should not persist over the long term. In cliff swallows, the

colony-size distribution has remained largely unchanged over 30 years (Brown et al.

2013a), suggesting no directional selection on certain group sizes brought about by sys-

tematic survival-related costs or benefits associated with colony size.

Spatiotemporal fluctuations in selection pressures (Siepielski et al. 2009; Bell 2010;

Tarwater and Beissinger 2013) are another mechanism that can maintain additive genetic

variance in fitness-related traits. In cliff swallows, extreme climatic differences among

years (Brown and Brown 2014) may mediate survival variation among individuals (Brown

et al. 2013b), with some individuals better able to cope with the challenges inherent in hot

and dry seasons (e.g., more blood-sucking ectoparasites) and others with those of cold and

wet summers (e.g., increased risk of starvation). Climatically driven oscillation in selection

pressures could maintain some level of additive genetic variation for survival ability,

perhaps expressed in part through temporal shifts in morphological attributes related to

foraging (Brown et al. 2013b).

The parent–offspring resemblance in adult survival probabilities in cliff swallows—and

especially the maintenance of apparent heritable variation in survival across sites as part of

a survival–fecundity trade-off—is consistent with the hypothesis that colonies represent

nonrandom sorting of individuals among groups (Brown and Brown 1996, 2001; Spot-

tiswoode 2007). These differences in survival illustrate that birds in different colonies have

varying expected lifespans. The results are another component in our attempt for cliff

swallows to understand the adaptive significance of coloniality and its complex inter-

connected web of selection pressures and evolutionary responses that often vary in space

and time (Wittenberger and Hunt 1985).
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Hoi H, Krištofı́k J, Darolová A (2014) All you can eat: is food supply unlimited in a colonially breeding
bird? Ecol Evol. doi:10.1002/ece3.1355

Hoogland JL (1981) The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae:
Cynomys leucurus and C. ludovicianus). Ecology 62:252–272

Hoogland JL, Sherman PW (1976) Advantages and disadvantages of bank swallow (Riparia riparia)
coloniality. Ecol Monogr 46:33–58

Kelly C, Price TD (2005) Correcting for regression to the mean in behavior and ecology. Am Nat
166:700–707

Kenway M, Macbeth M, Salmon M, McPhee C, Benzie J, Wilson K, Knibb W (2006) Heritability and
genetic correlations of growth and survival in black tiger prawn Penaeus monodon reared in tanks.
Aquaculture 259:138–145

Kern TD, Boutin S, LaMontagne JM, McAdam AG, Humphries MM (2007) Persistent maternal effects on
juvenile survival in North American red squirrels. Biol Lett 3:289–291

Laake JL (2013) RMark: an R interface for analysis of capture-recapture data with MARK. AFSC Rep
2013-01, Alaska Fisheries Science Center, Seattle

Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348
Loison A, Gaillard JM, Jullien JM (1996) Demographic patterns after an epizootic of keratoconjunctivitis in

a chamois population. J Wildl Manage 60:517–527
Loye JE, Carroll SP (1991) Nest ectoparasite abundance and cliff swallow colony site selection, nestling

development, and departure time. In: Loye JE, Zuk M (eds) Bird-parasite interactions: ecology,
evolution and behavior. Oxford University Press, Oxford, pp 222–242
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