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Abstract

Some birds exhibit a maxillary overhang, in which the tip of the upper beak projects beyond

the lower mandible and may curve downward. The overhang is thought to help control ecto-

parasites on the feathers. Little is known about the extent to which the maxillary overhang

varies spatially or temporally within populations of the same species. The colonial cliff swal-

low (Petrochelidon pyrrhonota) has relatively recently shifted to almost exclusive use of arti-

ficial structures such as bridges and highway culverts for nesting and consequently has

been exposed to higher levels of parasitism than on its ancestral cliff nesting sites. We

examined whether increased ectoparasitism may have favored recent changes in the extent

of the maxillary overhang. Using a specimen collection of cliff swallows from western

Nebraska, USA, spanning 40 years and field data on live birds, we found that the extent of

the maxillary overhang increased across years in a nonlinear way, peaking in the late

2000’s, and varied inversely with cliff swallow colony size for unknown reasons. The number

of fleas on nestling cliff swallows declined in general over this period. Those birds with per-

ceptible overhangs had fewer swallow bugs on the outside of their nest, but they did not

have higher nesting success than birds with no overhangs. The intraspecific variation in the

maxillary overhang in cliff swallows was partly consistent with it having a functional role in

combatting ectoparasites. The temporal increase in the extent of the overhang may be a

response by cliff swallows to their relatively recent increased exposure to parasitism. Our

results demonstrate that this avian morphological trait can change rapidly over time.

Introduction

Beaks in some species of birds have a maxillary overhang, in which the upper mandible is lon-

ger than the lower and may curve downward to result in a slight hook [1]. The overhang is

composed of keratin layers within the rhinotheca that cover the bone of the beak, with the rhi-

notheca near the beak tip subject to wear and growing more rapidly than the less distal rhi-

notheca layers [2]. The functional significance of the overhang has attracted surprisingly little

attention. While the extent of the beak’s hook may be important in foraging in some species

[3, 4], the maxillary overhang has been primarily studied as an anti-parasite adaptation [1, 5–

7]. During preening the lower mandible creates a shearing force against the overhang, serving

to damage ectoparasites on the feathers and leading to lowered parasitism on the body [1].
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Experimental reduction in beak overhangs of rock pigeons (Columba livia) led to increases in

feather lice [6], suggesting that the overhang has an important anti-parasite function. How-

ever, some studies have shown that relatively long maxillary overhangs can also be detrimental

to ectoparasite control [7–9], suggesting that an intermediate degree of overhang may confer

the greatest advantage during preening.

Little is known about the extent of intraspecific variation in the maxillary overhang or how

parasitism may have led to selection on this component of avian beak morphology. Here we

examine variation in the maxillary overhangs of cliff swallows (Petrochelidon pyrrhonota) and

assess whether the observed patterns are consistent with those expected if the overhang func-

tions in parasite removal. Cliff swallows are highly colonial insectivores that are subject to par-

asitism by fleas, lice, mites, and hematophagous bugs [10–12], and some of these parasites

have detrimental effects on the birds’ annual survival and nesting success [10, 11, 13–18].

Within the last 50 years, the cliff swallow has shifted its nesting almost exclusively to artificial

sites such as bridges and highway culverts, and the microclimate and nest stability of these arti-

ficial sites have led to greater exposure to parasitism than what the birds experienced on natu-

ral cliff nesting sites [18–21]. As in other highly social species [22–25], parasitism by

hematophagous bugs and fleas in cliff swallows tends to increase with colony size [11, 13]. The

prevalence of parasites and the fitness costs associated with them suggest that the maxillary

overhang in cliff swallows is a potential anti-parasite adaptation that might vary both tempo-

rally and spatially in response to the greater exposure to parasites the birds have encountered

in recent years and in the large colonies many occupy.

In this study we examine maxillary overhangs within a population of cliff swallows that we

have studied for 40 years in western Nebraska. If the maxillary overhang helps in controlling

parasites, we make the following specific predictions. (1) The presence of the maxillary over-

hang in cliff swallows should have increased over time in response to their recent greater expo-

sure to parasitism, which in our study area began when the birds switched heavily to artificial

nesting sites in the 1980’s [19]. (2) Because cliff swallows show some phenotypic specialization

for colony size [26, 27], individuals occupying the larger colonies that have more parasites

should have greater maxillary overhangs in general than those birds using smaller colonies. (3)

An increase in the average extent of the overhang should lead to fewer (or at least no change)

in parasites now compared to the 1980’s despite the potential for greater current exposure to

parasites. (4) Cliff swallows with maxillary overhangs should have fewer parasites than those

without perceptible overhangs, as found in other species [4–9]. (5) Anti-parasite advantages

should lead to birds with more perceptible overhangs having greater reproductive success than

those without such overhangs.

We use two kinds of data in this study: a museum collection of over 1100 cliff swallows col-

lected opportunistically over 40 years in our study area to test predictions (1) and (2), and

counts of parasites on nests and observations of live birds to test predictions (3)-(5). Given

that previous work on the functional significance of the maxillary overhang in other species

has involved primarily laboratory experiments or comparisons among different populations

that may also be subject to resource-related selection on bill morphology, our study is unique

in examining temporal and spatial correlates of maxillary overhang within a single population.

Methods

Study organisms and study site

The cliff swallow is a highly colonial passerine that breeds commonly throughout the western

half of North America and less commonly eastward [21]. In its original habitat, the species

built its gourd-shaped mud nests underneath horizontal overhangs on the sides of steep cliffs,
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often in dense clusters (Fig 1), but now many cliff swallows nest under the sides of bridges and

buildings or inside concrete culverts underneath roads [28]. These birds winter in southern

South America, primarily Argentina [21]. Cliff swallows feed on a wide array of insect taxa

[11] that are caught in flight.

Parasites of cliff swallows in our study area include swallow bugs (Hemiptera: Cimicidae:

Cimex vicarius), fleas (Siphonaptera: Ceratophyllidae: Ceratophyllus celsus), mites (Astigmata:

Avenzoariidae: Pteronyssoides obscurus), and two species of feather lice (Ischnocera: Philopter-

idae: Acronirmus [formerly Brueelia; 29] longa and Amblycera: Menoponidae: Machaerilae-
mus malleus) [10–12]. The hematophagous bugs and fleas are the most numerous and have the

greatest effects on cliff swallows by reducing survival of nestlings and adults, affecting feather

asymmetry and site use, and constraining the duration of the nesting season [11, 13–17, 30].

Lice are also associated with a reduction in annual survival of adult cliff swallows [10].

We studied cliff swallows near the Cedar Point Biological Station (41.2097˚ N, 101.6480˚

W) in western Nebraska, USA, along the North and South Platte rivers. The study area

includes portions of Keith, Garden, Deuel, Lincoln, and Morrill counties. Our work was done

primarily at cliff swallow colonies on highway bridges and box-shaped culverts underneath

roads or railroad tracks [28]. Colonies were defined as birds from groups of nests that inter-

acted at least occasionally in defense against predators or by sharing information on the where-

abouts of food [11]. Typically, all the nests on a given bridge or culvert constituted a colony,

Fig 1. Cliff swallows at a nesting colony in western Nebraska.

https://doi.org/10.1371/journal.pone.0263422.g001
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and most colonies were at least 0.5 km from the next nearest. Colony size varied widely, rang-

ing from 2 to 6000 nests (mean ± SE = 404 ± 11 nests, n = 3277 colonies), with some birds also

nesting solitarily.

Specimen collection

Cliff swallows were collected opportunistically in 1982–2021 whenever salvageable specimens

were found in the course of our research, and preserved as skins [31]. These included birds

dying in mist-netting accidents, on roads due to collisions with vehicles, during severe weather

events, due to other miscellaneous causes (e.g., drowning during fights, nest falls, killed by

predators), or for unknown reasons. The colony at which a dead bird was found was desig-

nated as the colony size for that specimen, as banded birds found dead were invariably at the

site where they were known to be resident. Colony size refers to the number of active nests at a

site that year, and was determined from active-nest counts or estimation from the number of

birds present [11, 28]. For any colony where we had more than 50 specimens in a year, we ran-

domly selected 50 from each site for this study. We scored maxillary overhangs of 1207 cliff

swallow specimens from a total of 230 colonies across the 40 years; of these, 1108 had full

information on colony size, sex, and other variables. Only adult birds (ones at least one year

old, known from plumage) were included in this study. We noted which birds were from colo-

nies where parasites had been removed by fumigation [11, 13] and accounted for colony fumi-

gation status in the analyses. All specimens were from the collection at the University of Tulsa,

except for 9 specimens collected in the study area in 1984 from the collection of the American

Museum of Natural History and 8 specimens collected in the study area in 1985 from the col-

lection of the Peabody Museum of Natural History.

Scoring maxillary overhang

Each specimen was assigned to one of three categories (Fig 2). Birds with type 0 had no percep-

tible overhang; those with type 2 had a noticeable downward curving of the upper mandible;

and birds with an overhang intermediate between these were type 1 (Fig 2). Repeatability of

scoring was done for a random sample of 50 birds that were re-scored 3 months later while

blind to the previous measures. To account for possible relationships between beak overhang

and beak size or overall head size, the beak width at its widest point at the cere was measured

with calipers, and (for birds collected in 1982–2018) the head size was measured and converted

to volume by G.S.W., as described in Wagnon and Brown [31]. The wing length of the unflat-

tened wing from the shoulder to the tip of the longest primary was also measured. For birds

from 1982–2018, all scoring of overhangs and measurements were done by G.S.W. and those

from 2019–2021 by C.R.B. Results were almost identical for both the entire dataset and for

those measured only by G.S.W., so we assume no systematic bias in the measurements between

the two people. The measurements for repeatability were done by G.S.W.

Maxillary overhangs in live cliff swallows were scored at five non-fumigated colonies in

2020–21 where we also did regular nest checks. We used a 20-60X spotting scope to observe

birds sitting in their nest entrances. Observations were made at each site while the colony was

primarily incubating, which was a time that most nest intrusions by neighbors or non-resi-

dents had largely ceased and thus we were mostly seeing actual residents at the nests [11].

However, because birds were not color-marked, we scored nests as either (1) having at least

one resident with a visible beak overhang (corresponding to beak score 2 for the specimens) or

(2) as having only birds with no perceptible overhang. This latter group included birds scored

as 0 and 1 on specimens because the smaller overhangs were difficult to visually distinguish

reliably on live birds under field conditions. Because some nests scored as no overhang may
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Fig 2. Examples of the three categories of maxillary overhang used for scoring cliff swallow specimens: 0 (bottom), 1 (middle), and 2 (top).

https://doi.org/10.1371/journal.pone.0263422.g002
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have had a resident with a type 2 overhang that was overlooked, our tests for differences

among nests with owners of these overhang types were conservative. All observations and

overhang scoring of live birds were done by one person (O.M.P.).

Ethical note

Specimens were salvaged under authority of the Bird Banding Laboratory of the United States

Geological Survey (permit 20948) and a series of Scientific Permits from the Nebraska Game

and Parks Commission. All animal use was approved by a series of protocols from the Institu-

tional Animal Care and Use Committees of Yale University and the University of Tulsa. Field

sites were on public right-of-way, requiring no permission to access, or on private land where

landowners had given permission for entry.

Parasite counts and nesting success

Because fleas are active on the outsides of cliff swallow nests only for a brief time early in the

spring [11], we assessed flea parasitism for nests by removing nestling cliff swallows and scor-

ing the number of fleas crawling on the nestlings’ bodies [13]. For the flea analysis, we used

data from colonies throughout the study area in 1982–1989 and 2015–2018 where nestlings

were removed at 10 days of age and the number of Ceratophyllus fleas counted [11, 13]. Cliff

swallow nests were checked (using a flashlight and dental mirror) at 2–4 day intervals at colo-

nies, allowing us to know hatching date and nestling age for each nest. Flea counts were done

the same way each year throughout the study, with C.R.B. training and supervising the bird

handling and parasite counts each year. We also recorded brood size and nestling weight at the

time fleas were counted and knew the hatching date and colony size. Data were available for

4453 nestlings from a total of 58 colonies in 1982–1989 and 2015–2018 [18]. Only non-fumi-

gated nests were used in analysis of fleas.

Nests where birds were observed in 2020–21 were checked to record nest contents. For

these nests, at the time of each nest check we estimated the number of ectoparasitic swallow

bugs visible on the outside of each nest. This provides a relative measure of the extent of swal-

low bug parasitism per nest [32] and is the best way known to score bug parasitism at active

nests. One person (O.M.P.) did all swallow bug counts on nests, with the scoring of maxillary

overhangs of nest owners done without knowledge of the parasite counts or eventual success

of a nest. Although we had bug counts per nest taken throughout the nesting season, for this

study we used only the last count prior to when the eggs in a nest hatched. This standardized

the counts with respect to host nesting stage for each nest, and also meant that we had bug

numbers for nests that failed soon after hatching (which typically led to a major reduction in

the number of bugs present after failure). Nesting success was measured as the number of nest-

lings still alive 17 days after hatching. Nests failing prior to hatching or before 17 days were

scored as having 0 nestlings surviving. We had 190 nests from 2020–21 with information on

owners’ maxillary overhang, swallow bug parasitism, and nesting success.

Statistical analyses

Analyses of variables predicting maxillary overhang in specimens, nesting success and bug par-

asitism in live birds, and the number of fleas per nestling used mixed-model regression imple-

mented with Proc MIXED in SAS [33]. Independent covariates (fixed effects) were identified a
priori based on the questions posed here or past work (Table 1). Interactions between fixed

effects were explored in preliminary analyses, but none was significant and thus not presented

here. In analyzing fleas per nestling, we treated year as a categorical predictor variable (e.g.,

two categories, 1982–89 and 2015–18), designated as decade, given that a ~25-year gap existed
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in when these data were collected. Analysis of the specimen collection, in which specimens

were collected continuously across the entire time of the study, treated year as a continuous

predictor variable. Fumigation status of a colony site was a categorical (yes/no) variable. Over-

hang type was an ordinal response variable (0, 1, 2), and because categorizing the overhangs

on the specimens was generally very obvious (Fig 2), we considered the intervals among them

equivalent, allowing overhang type to be treated as a continuous variable in analyses [34].

To account for non-independence of observations (and potential pseudoreplication) in our

data, in the mixed models we used the following random intercept variables where appropri-

ate: colony site, coded as the same site designation across years, to account for potential spatial

dependence of a colony site’s physical location; colony-site-by-year, coded the same for all

observations at a colony site in the same year but different between years, to account for

dependence among observations at a single colony within a year; and (for the flea analysis)

nest identity, coded the same for all nestlings within the same nest in a given year but different

among years, to account for potential dependence among nestlings from the same nest.

Repeatability in scoring maxillary overhang by G.S.W. was assessed with the intraclass cor-

relation coefficient [35], calculated from a model with specimen number as the independent

predictor of maxillary overhang and using Proc GLM in SAS.

Results

Overhang variation among specimens

Repeatability of overhang scoring on specimens was high and significant (rI = 0.751, F1,49 =

7.16, P< 0.0001). The two significant predictors of the extent of maxillary overhang were year

and colony size (Table 1). There was no significant effect of sex, wing length, bill width, or

whether a colony site was fumigated while controlling for colony site and colony-site-by-year

as random effects (Table 1). For the subset of 1043 specimens from 1992–2018, there was no

significant effect of head volume (β = 0.0698, SE = 0.1600, F1,833 = 0.03, P = 0.86) in a separate

analysis that was otherwise identical to that in Table 1.

Maxillary overhang varied with year in a curvilinear pattern (Table 1), seemingly increasing

from 1982 until about 2009 and declining afterwards (Fig 3). A model with a nonlinear effect

of year was a better fit (AIC = 2121.8) than an otherwise identical one with only a linear effect

of year (AIC = 2137.1).

Table 1. Mixed-model results showing fixed-effect and random-effect predictors of beak overhang score (0, 1, 2) in cliff swallow specimens (N = 1108).

Fixed effect β SE F df P

year 6.9396 1.1563 36.02 1, 900 < 0.0001

year�year –0.00173 0.000289 35.90 1, 900 < 0.0001

colony size –0.00016 0.000054 9.04 1, 900 0.0027

bill width 0.8261 0.6208 1.77 1, 900 0.18

wing length 0.1527 0.1839 0.69 1, 900 0.41

colony fumigation status1 –0.05575 0.07440 0.56 1, 900 0.45

sex2 0.01658 0.03701 0.20 1, 900 0.65

Random effect Estimated variance component SE

Level

Z P

colony-site-by-year 0.05003 0.01857 230 2.69 0.0035

colony site 0.000248 0.01006 78 0.02 0.49

1Relative to fumigation = yes as baseline.
2Relative to male as baseline.

https://doi.org/10.1371/journal.pone.0263422.t001
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The extent of the maxillary overhang declined with increasing colony size (Fig 4, Table 1).

Changes in fleas over time

The mean (± SE) number of fleas counted on cliff swallow nestlings in the 1980’s, 0.896 (±
0.0329, n = 3020), was about twice that in the 2010’s, 0.456 (± 0.0304, n = 1434). Decade was a

significant predictor of flea count (F1,3099 = 8.63, P = 0.0033), while controlling for the fixed

effects of brood size (F1,3099 = 22.38, P< 0.0001), hatching date (F1,3099 = 6.83, P = 0.0090),

body mass (F1,3099 = 19.16, P< 0.0001), and colony size (F1,3099 = 0.71, P = 0.40) and the ran-

dom effects of colony site (Z = 1.35, P = 0.089), colony-site-by year (Z = 1.69, P = 0.046), and

nest identity (Z = 12.81, P< 0.0001).

Overhangs in relation to swallow bug parasitism and nesting success

The number of swallow bugs counted on the outside of the nest was significantly higher for

cliff swallow nests where owners had no perceptible maxillary overhang than at nests where at

least one owner had an overhang (Fig 5, F1,183 = 4.11, P = 0.044); laying date had no effect on

bugs (F1,183 = 1.71, P = 0.19) while controlling for colony site as a random effect (Z = 1.01,

P = 0.15). Nest success (the number of nestlings surviving to day 17) where no owner had a

perceptible maxillary overhang was not significantly different from nests where at least one

owner had an overhang (Fig 5, F1,181 = 0.79, P = 0.38); nest success was significantly affected

by the number of swallow bugs (F1,181 = 8.01, P = 0.005), clutch size (F1,181 = 5.29, P = 0.022),

and laying date (F1,181 = 12.60, P = 0.0005) while controlling for colony site as a random effect

(Z = 1.29, P = 0.10).

Fig 3. Extent of the maxillary overhang in cliff swallow specimens in relation to year, 1982–2021. Yearly means (±
1 SE) are shown with gray dots and bars. The predicted values from a mixed model regression (Table 1) with other

variables held at their mean are shown with a solid line, and the 95% confidence interval of the predicted values are

shown with dotted lines.

https://doi.org/10.1371/journal.pone.0263422.g003

PLOS ONE Temporal change in avian beak overhangs

PLOS ONE | https://doi.org/10.1371/journal.pone.0263422 February 22, 2022 8 / 14

https://doi.org/10.1371/journal.pone.0263422.g003
https://doi.org/10.1371/journal.pone.0263422


Discussion

Our analyses show that the extent of the maxillary overhang of cliff swallows in western

Nebraska increased over the period 1982–2021 but in a nonlinear way, seeming to peak in the

late 2000’s and then declining. The extent of the maxillary overhang was greater among birds

in smaller colonies. Accompanying the temporal increase in the overhang was a reduction in

the number of fleas on nestlings in general during the same time period. Birds with perceptible

overhangs had fewer swallow bugs on the outside of their nest, but this reduction in swallow

bug parasitism did not translate into higher nesting success for cliff swallows with more visible

overhangs. We found no evidence that the extent of the maxillary overhang varied systemati-

cally with other aspects of cliff swallow morphology, with non-significant effects of wing

length, beak width, and head size, and sex had no effect on the extent of the overhang.

Cliff swallows have only relatively recently come into contact with more parasites by mov-

ing off of natural cliff nesting sites and onto artificial sites such as bridges where parasite sur-

vival is likely enhanced [18, 20]. Given the birds’ recent exposure to higher levels of parasitism

(and assuming that the maxillary overhang can be help control ectoparasites on a cliff swal-

low’s feathers; see below), we predicted a temporal response in the extent of the maxillary over-

hang in this population. The increase in maxillary overhang in the immediate aftermath of the

1980’s nesting-site shift supports this prediction (Fig 3). Interestingly, the curvilinear pattern

(Fig 3) is consistent with other work showing that maxillary overhangs that are too long can be

counterproductive in parasite removal [7–9]; long overhangs also might more often break [6]

Fig 4. Extent of the maxillary overhang in cliff swallow specimens in relation to colony size (no. active nests at a

site). Colony-size means (± 1 SE) are shown with gray dots and bars. The predicted values from a mixed model

regression (Table 1) with other variables held at their mean are shown with a solid line, and the 95% confidence

interval of the predicted values are shown with dotted lines.

https://doi.org/10.1371/journal.pone.0263422.g004
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or interfere with foraging [4]. Thus, opposing selection may have begun moving maxillary

overhangs back toward more intermediate values in cliff swallows.

Increased maxillary overhangs would be particularly beneficial in larger colonies, where

more parasites occur [11, 13]. Given that cliff swallows have a genetically based preference and

phenotypic specialization for certain colony sizes [26], we thus predicted that cliff swallows in

larger colonies should have more pronounced overhangs. However, we found the opposite

pattern, with larger-colony phenotypes averaging smaller overhangs (Fig 4). This trend,

although statistically significant, was not particularly strong. Possibly the effect of year

obscured a colony-size effect through year-based colony sampling biases (e.g., larger colonies

overrepresented in the earlier years), although we found no significant statistical interaction

between year and colony size (F1,900 = 0.39, P = 0.53) in predicting the extent of the overhang.

The lack of a positive colony-size effect on maxillary overhang is not consistent with it being a

genetic response by the more social phenotypes [26, 27] to the challenge of greater parasitism

in the larger colonies. No information is available on the heritability of the maxillary overhang

for any species [9], which complicates interpretation of empirical patterns (Figs 3 and 4) as

reflecting selection in general.

Has an increase in maxillary overhang led to reduced infestations of cliff swallow parasites

over time? We do not know about lice: 9.5% of free-living cliff swallows sampled in one year

(1992) had one or more amblyceran lice [11], but lice have not been quantified in any other

years. Our data on fleas show a reduction of about 50% among those found on nestling cliff

swallows between the 1980’s and the 2010’s. Assuming those on nestlings reflect generally the

level of flea parasitism on adults, it seems likely that flea parasitism has been reduced over the

Fig 5. Mean (± SE) number of nestling cliff swallows surviving to day 17 per nest and number of swallow bugs

counted per nest where at least one nest owner had a perceptible maxillary overhang (dark bars; N = 75 nests) and

where no nest owners had perceptible overhangs (light bars; N = 115). The number of bugs differed significantly

among nest types but the number of nestlings surviving did not (see text).

https://doi.org/10.1371/journal.pone.0263422.g005
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last 35 years. That this reduction was concurrent with the increase in the extent of the birds’

overhangs might indicate that the maxillary overhang is an adaptation to ameliorate the cost of

fleas. We note that the overall reduction in flea parasitism was quantitatively small, but fleas

counted on nestlings is merely an index of overall parasitism in a nest [11].

Based on collected nests where all bugs in a nest were counted, swallow bug parasitism per

cliff swallow nest has not changed significantly over the past 35 years [18]; however, in 2020–

21 birds with perceptible overhangs had significantly fewer bugs on the outsides of their nests

[another index of parasitism; 32], suggesting the maxillary overhang is effective in controlling

bugs to some extent. Had the birds not developed greater overhangs over time, the average

number of bugs might be greater now than in the 1980’s. Cliff swallows have developed a

greater tolerance to the effects of swallow bugs over the last 30 years [18], and their not being

as negatively affected by bugs now as in the 1980’s might partly explain why the increased

numbers of bugs in nests of birds without perceptible overhangs did not lead to differences in

reproductive success (Fig 5). Another possibility is that our inability to distinguish overhangs

of 0 from 1 under field conditions meant that having to combine nests from these two groups

of birds obscured relevant variation in nesting success among them.

The predictions of this study are based on the maxillary overhang being effective in control-

ling flea and swallow bug parasites of cliff swallows. Without experimental studies, we do not

know whether cliff swallow fleas are controlled by preening. The presence or absence of fleas

did not affect the extent of preening in great tits [Parus major; 36] or blue tits (P. caeruleus;
[37]), but blue tits rifle through nest materials, during which they may kill and/or swallow fleas

in the nest [37], and a longer beak overhang might be beneficial in such activity. Gravid fleas

crawl on cliff swallows’ feathers and are relatively slow-moving (C. R. Brown, pers. obs.), sug-

gesting they could be dislodged by shearing action of a bird’s beak.

Both adult and nymphal swallow bugs crawl on the birds while seeking blood meals, espe-

cially at night, and nymphs in particular are susceptible to fatal injury when engorged and eas-

ily “pop” at the slightest touch. Preening and a maxillary overhang in all likelihood helps

control bugs on the feathers; high levels of nocturnal preening are consistent with our hearing

extensive bird movement inside nests at night when swallows do not come and go from the

nests (C. R. Brown, pers. obs.). Swallow bugs stay mostly inside nests or on the substrate and

do not frequently travel on cliff swallows outside of the nest; however, they will disperse on the

birds’ legs [38] and then also are susceptible to preening.

However, we should note that not all ectoparasites can be controlled by a maxillary over-

hang. In experiments with rock pigeons, birds without beak overhangs were as successful at

controlling highly mobile hippoboscid flies as were those with overhangs [39]. This result may

have been because flies are relatively large and soft-bodied, at least as compared to lice for

which advantages of the overhang have been demonstrated [1, 6]. Without experimental stud-

ies, we do not know if this situation applies to cliff swallow parasites such as fleas and swallow

bugs, although when on the birds these parasites are often either attached to the skin (during

feeding) in the case of bugs or slowly crawling on the feathers in the case of fleas (C. Brown,

pers. obs.), so in those ways they may be unlike hippoboscid flies.

In conclusion, the intraspecific variation in the extent of the maxillary overhang in cliff

swallows was partly consistent with it having a functional role in combatting ectoparasites.

The increase over time (up to a point) as the birds were exposed to more parasites, the tempo-

ral reduction in fleas, and our observing fewer swallow bugs on the outsides of nests where

birds had perceptible overhangs all suggested an anti-parasite role for this morphological trait.

On the other hand, birds exposed to more parasites in larger colonies did not have greater

overhangs than swallows in small colonies, and nesting success did not vary with the extent of

the maxillary overhang. If the hippoboscid fly results [39] apply to cliff swallow parasites, the
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temporal changes in the extent of the maxillary overhang we documented could reflect other

factors, such as decreased wear on the beak or variation in principal food type (flying insects).

We have no direct data to address these possibilities. Regardless of the overhang’s precise func-

tion, our results add to those of others [40, 41] in demonstrating that avian morphological

traits can rapidly change over time.
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