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Sizes of most kinds of animal groups vary considerably within a
population, with group size often causing direct effects on the
fitness of group members. Although the consequences of varying
group size have been well studied, the causes of variation in group
size remain poorly known for most animals. Groups might vary in
size because different individuals perform better in differently
sized groups and thus have genetic predispositions to choose large
or small groups. We examined whether heritable variation for
choice of group size exists in the cliff swallow (Petrochelidon
pyrrhonota), a colonial bird that nests in colonies ranging from 2
to 3,700 nests. Parent-offspring regressions showed significant
heritabilities for choice of colony size under natural conditions.
Partial cross-fostering experiments showed that individuals reared
in colonies of sizes different from those of their birth returned to
breed the next year in colonies that matched their birth colony in
size and actively avoided those similar to their rearing colony,
suggesting that choice of colony size is genetically based. Common
environmental effects, maternal effects, and philopatry did not
explain these results. Variation in group size probably results in
part from a polymorphism in genetic preferences within the
population, and the range in colony sizes is maintained by natural
selection on the type of bird occupying each site.

Virtually all social animals occur in groups of different sizes,
and often the largest and smallest groups within a popula-
tion differ in size by several orders of magnitude. Variation in
group size has been observed in foraging groups, leks, extended
family groups, migratory herds and flocks, communal roosts, and
breeding colonies (1-9). This natural variation in group size has
been used to measure consequences of sociality, such as repro-
ductive or foraging success and predator avoidance through
vigilance, and to infer the selective advantages of grouping
(10-16). However, the consequences of variation in group size
are better understood than the causes. Despite considerable
interest in the evolution of social living, it remains unclear in
general why individuals choose to live in groups of different sizes,
and the few hypotheses to explain variation in group size (8) have
rarely been tested.

Groups have been suggested to vary in size for three possible
reasons. One possibility is that a single group size is best, but
individuals are constrained from achieving this ideal by the
behavior of animals that seek to join the group. When a group
achieves the optimal size, it cannot maintain that size, because
other individuals receive a greater payoff by joining that group
and inflating it slightly above the optimum than by avoiding the
group and settling as a solitary (17-18). This process continues
until the group reaches a point at which fitness is higher for a
potential joiner if it avoids the group and settles as a solitary.
Such a scenario requires a variety of largely untested assump-
tions about how fitness varies with group size, the degree of
relatedness among group members, whether settlement can be
regulated by despotic behavior, and the extent of collective
decision making by settlers (19-21); thus, whether constraints on
group size in fact generate variation in size is unknown.

Another explanation for variation in group size is that group
size reflects local variation in resource abundance. Habitat
patches that are productive can support more individuals (larger

groups) than those with scarce resources. Population density may
be regulated among habitat patches through a variety of mech-
anisms, including classical ideal-free processes, despotic behav-
ior among unequal competitors, attraction to conspecifics, and
direct assessment of habitat quality (22-27). Only a few studies,
however, have demonstrated a strong causal link between local
resource abundance and degree of aggregation by resource
users (28-31).

Variation in group size may also reflect inherent differences
among animals. Some individuals by virtue of their size, condi-
tion, age, experience, or genetic makeup may be superior at
competing for resources in large groups, and therefore, these
individuals settle in habitat patches that can support more
animals. Other individuals may be less capable of competing in
larger groups, and they realize higher fitness by settling as
solitaries or in small groups (32). Individuals may also have
different cost-benefit expectations from a given group size. For
example, experienced animals may have less to gain from the
social advantages of large groups and more to lose from the
automatic costs such as increased probability of encountering
diseases or parasites (15), and consequently, they avoid dense
concentrations of conspecifics. Although preference for group
sizes could be a conditional strategy that depends on age or
nonheritable variation in condition (31-33), preferences could
also reflect heritable variation in an individual’s ability to
function in different social environments. One way to infer the
likelihood that choice of group size is genetically based is by
estimating the heritability of individuals’ choices.

Here, we estimate the extent of heritable variation for choice
of breeding-colony size in cliff swallows (Petrochelidon pyrrho-
nota) of western North America by using parent-offspring
regressions and a partial cross-fostering experiment in which
young were exchanged between colonies of different sizes for
rearing and their subsequent breeding-colony choices were
monitored. In our study area in southwestern Nebraska, cliff
swallows breed in colonies that range from 2 to over 3,000 nests.
This study is the first on any taxa, to our knowledge, that has
measured heritability of group-size preference.

Methods

Our research was conducted along the North and South Platte
Rivers centered near Ogallala, NE, in Keith and Garden coun-
ties, from 1982 to 1999. In this area, cliff swallows nested on
artificial structures such as bridges and highway culverts and on
natural cliff faces, where their gourd-shaped mud nests are built
on a vertical wall underneath a horizontal overhang. The total
study area was approximately 150 X 50 km, and mean (=SEM)
colony size (n = 1,282) was 356.5 (* 16.3) nests, ranging from
birds that nested solitarily to colonies of 3,700 nests (15). Colony
size was the maximum number of nests at a site containing one
or more eggs.
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Breeding colonies of individuals were determined by repeat-
edly capturing birds during mark-recapture sampling at colony
sites. We rotated among all accessible colonies (30-35 per
season) and on repeated visits mist-netted cliff swallows at each.
Nets were usually strung across the entrances of highway culverts
or along the sides of bridges that contained swallow colonies, and
the birds were caught as they exited their nests. In some cases,
we captured individuals inside their nests at night by entering the
colony after dark and plugging the nest entrances with cotton.
All birds were banded with U.S. Fish and Wildlife Service bands.
Nestlings were banded before fledging. Nestlings not part of the
cross-fostering experiment were removed briefly from their nests
at 10 days of age for banding and then promptly returned to their
natal nests.

We performed a partial cross-fostering experiment consisting
of exchanging newly hatched chicks with similarly aged chicks in
colonies of a different size. In broods of even numbers (two or
four chicks), we exchanged exactly half of the nestlings and left
the other half to be reared in their natal nest. Siblings were kept
together and fostered to the same nest whenever two or more
nestlings from a single brood were exchanged. In broods of three
chicks, we exchanged either one or two nestlings per brood,
alternating between each three-chick brood, so as to achieve
roughly similar numbers of chicks transferred and not trans-
ferred for the colony as a whole. In broods of five chicks, we
alternated between two and three nestlings transferred per
brood. We maintained the same brood sizes for rearing that each
chick was hatched in. Nestlings were transferred at approxi-
mately 5 days of age, the youngest age at which they could be
banded for permanent identification; the nestling period for cliff
swallows in our study area was approximately 25-26 days. During
transfer, nestlings were placed in a cardboard box with dividers
that isolated each bird from others being transferred at the same
time.

Settlement at colony sites by these birds as breeders in
subsequent years was monitored through systematic mist-
netting. Cliff swallow colonies were defined as groups of nesting
pairs, usually on the same bridge or culvert, that interacted at
least occasionally (15). For our analyses, we converted all colony
sizes each year to ranks, with 1 being the largest colony available
that season. We used ranks, because they account for between-
year variation in the number of colonies available and their size
distribution, both of which depend on annual population size.
Using colony ranks allowed us to combine data across years. In
addition, ranks are probably more biologically meaningful than
actual colony sizes, because actual colony size is subject to
change that is beyond an individual’s control. For example, a bird
may settle in a colony of its target size, but later arrivals may join
the group, increasing its size, or other birds may decide to vacate
the site, reducing its size. However, an individual probably has
greater control over simply choosing a relatively large or rela-
tively small colony among those available in a given season.

Ranks were computed separately for five clusters of colony
sites in the study area. Radio-tracking studies of cliff swallows
early in the season showed that birds generally confine their
prospecting for sites to total linear distances of 3 to 15 km along
the North Platte River Valley (15). Based on these observations
and mark-recapture data showing that most swallows move
between colonies that are =3.5 km apart, we defined clusters of
colonies as those in which a bird’s colony selection likely
occurred. The colonies farthest apart within these clusters were
=13 km from each other; the mean (£SEM) distance between
adjacent colony sites within a cluster (n = 55) was 0.99 km
(£0.13), and the mean (=SEM) distance between clusters (n =
5) at their closest points was 10.72 km (*+6.87). In each case,
clusters were separated by expanses of habitat that were uni-
formly unsuitable for nesting, and thus, clusters seemed to be
naturally bounded. We designated five clusters in our main study
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Fig. 1. Midparent-offspring regression of breeding-colony size rank in cliff
swallows for all offspring (a) and those that occupied only nonnatal colony
sites (b). Means (=SEM) are shown; the numbers by dots (sample sizes) indicate
number of offspring recaptured from each midparent rank.

area, a region extending approximately 80 km between Lewellen
and Paxton, NE, along the North and South Platte Rivers. These
clusters contained 11, 12, 15, 20, and 25 separate colony sites,
respectively. We ranked sites within a cluster that had active
colonies each year. Ranks ranged from 1 up to 21 in some
clusters in some years.

We included all five clusters in our mark-recapture sampling.
Birds were caught at 72-88% of the colony sites in four of the
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Table 1. Heritability estimates (h?) for choice of breeding-colony size in cliff swallows

Category of birds h? SEM P
Midparent, using offspring’s natal-colony size as parental value
Male (n = 1,390)* 0.346 0.027 <0.0001
Female (n = 1,078) 0.377 0.032 <0.0001
Birds always using natal site (n = 1,654) 0.369 0.020 <0.0001
Birds using only nonnatal sites (n = 927) 0.326 0.036 <0.0001
Midparent, using parents’ all known breeding-colony sizes
Male (n = 92) 0.279 0.235 0.24
Female (n = 58) 0.553 0.216 0.013
Single-parent, using parents’ all known breeding-colony sizes
Male—father (n = 92) 0.714 0.472 0.13
Male-mother (n = 58) 0.312 0.407 0.44
Female-father (n = 92) 1.131 0.349 0.002
Female-mother (n = 58) 0.642 0.474 0.018
Midparent, 1997 cross-fostering, using offspring’s natal-colony size as parental value
Males, not cross fostered, against birth colony (n = 143) 0.470 0.107 <0.0001
Males, cross fostered, against birth colony (n = 130) 0.536 0.102 <0.0001
Males, cross fostered, against rearing colony (n = 130) —0.549 0.103 <0.0001
Females, not cross fostered, against birth colony (n = 114) 0.345 0.116 0.003
Females, cross fostered, against birth colony (n = 116) 0.295 0.122 0.017
Females, cross fostered, against rearing colony (n = 116) —0.306 0.124 0.015
Midparent, 1998 cross-fostering, using offspring’s natal-colony size as parental value (sexes combined)
Not cross fostered, against birth colony (n = 87) 0.375 0.061 <0.0001
Cross fostered, against birth colony (n = 88) 0.179 0.072 0.015
Cross fostered, against rearing colony (n = 88) -0.117 0.068 0.086

*Sample sizes differ in "Midparent, using offspring’s natal-colony size as parental value,” because sex was unknown for some birds.

clusters and at 45% of the colonies in the fifth (smallest) cluster.
Our netting effort within a cluster was done roughly in propor-
tion to the fraction of the total cliff swallow population con-
tained there. This method allowed us to determine that most cliff
swallows occupied the same cluster of colonies between years;
among those birds banded as nestlings and whose breeding
colonies were known in one or more subsequent years (Fig. 1;
n = 2,581 birds), only 4.8% moved to a nonnatal cluster in at least
1 year as a breeder. This finding supported our assumption that
a cluster in which a bird settled in a given year represented the
set of colony sizes from which it chose that season.

We used linear parent—offspring regression (34, 35) to esti-
mate heritability of colony-size decisions. When identities of
both parent and offspring from a nest were known, we calculated
both single-parent and midparent regressions; heritability for
single-parent regression was taken to be twice the regression
coefficient, and heritability for midparent regression was taken
to equal the regression coefficient. Colony-size ranks for each
bird (parent or offspring) were averaged over all seasons for
which we knew the bird’s breeding-colony size, and these average
values per individual were used in analyses. When specific
identities of parents were unknown, we considered the colony
size that year to represent the midparent value for each offspring.
We used Falconer’s (34) method to weight families of unequal
size. Sample sizes for the single-parent analyses that required
known parents were smaller than for those that used natal-
colony rank as the midparental value, because we had fewer nests
with both mother and father identified and from which nestlings
were encountered subsequently as breeders. Because different
parents had been followed for different numbers of years and
thus had potentially different average parental-colony ranks, we
would not necessarily expect single-parent heritabilities using
known parents to be identical for each sex or to match those
computed by using only natal-colony rank as the midparent
value.

Results

For nonexperimental birds banded as nestlings and encountered
as breeders in 1 or more subsequent years (Fig. 1; n = 2581), a
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regression of their breeding-colony rank on that of their parents
yielded midparent heritability estimates that differed signifi-
cantly from zero for both males and females and for birds that
always used their natal site as breeders and those that used only
nonnatal sites (Table 1). There was close agreement between
heritabilities for birds that were philopatric to the natal site and
those that dispersed to nonnatal sites. For this reason, we
combined both philopatric and dispersing birds for the single-
parent heritability analyses (for which we had smaller sample
sizes). Single-parent heritabilities tended to be larger than
midparent heritabilities, with offspring-father heritabilities
greater than offspring—mother heritabilities for each sex (Table
1). Thus, among nonmanipulated birds, offspring tended to
select colony sizes as breeders similar to those of their parents
regardless of whether they settled at their natal site (Fig. 1).
In a cross-fostering experiment performed from 1997 to 1998,
we transferred nestlings between two large colonies (950 and
1,005 nests, each rank 3) and five small colonies (220, 193, 154,
98, and 55 nests, ranks 11, 8, 9, 15, and 17, respectively, in the
different years). All transfers were made between colonies
within the same cluster containing 25 total colony sites. In 1997,
the two small colonies (193 and 154 nests) were 1.8 km apart, and
they were 3.4 and 3.9 km from the large colony (950 nests),
respectively. In 1998, the three small colonies were situated
linearly along a railroad track, with 1.0 and 4.9 km separating
them. They were 3.3, 3.4, and 5.6 km, from the large colony. We
recaught 721 (36.6%) of the nestlings in the cross-fostering
experiment (n = 1,968) as breeders in 1 or more subsequent
years. Mean breeding-colony rank varied significantly with col-
ony of birth but not with colony of rearing for both males and
females from 1997 (Fig. 2 a and b) and both sexes combined from
1998 (Fig. 2c). Cross-fostered cliff swallows chose breeding
colonies of size more similar to those where they were born than
where they were reared; breeding-colony ranks of cross-fostered
nestlings in most cases differed significantly from the ranks of
birds born and raised at their foster colony but did not differ
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treatment recaptured as breeders. Within each year, bars with the same letter
denote means that did not differ significantly (Wilcoxon test, P > 0.10); bars
with different letters denote means that differed significantly (Wilcoxon test,
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significantly from those of birds born and raised at their birth
colony (Fig. 2).

We also examined the spatial settlement patterns of birds in
the cross-fostering experiment. Among individuals that dis-
persed to nonnatal sites for breeding, birds born and raised at the
same site moved to colonies that were a mean (£SEM) 3.07 km
(%0.28) from their natal colony (n = 196) with the longest
movement we detected being 46.3 km. Cross-fostered nestlings
moved to colonies that were a mean (*SEM) 3.38 km (+0.28)
from their birth colony (» = 216) with the longest movement
being 41.7 km. This difference was not significant (Wilcoxon test,
P = 0.21). This result illustrates that both classes of birds tended
to settle in the same general area; most settled in the same cluster
of their birth, and thus, both classes had the same set of colony
sizes to choose from.

We estimated midparent heritabilities for birds in the cross-
fostering experiment by regressing breeding-colony rank on
birth- and rearing-colony rank for nestlings that were cross
fostered and for those born and reared at the same site (Table
1). For birds born and raised at the same site, heritabilities were
similar to those estimated from our larger sample of nonma-
nipulated birds (Table 1). Heritabilities estimated by regressing
cross-fostered birds’ breeding-colony ranks against those of their
true parents (birth colony) were significantly positive and similar
in magnitude to heritabilities estimated from birds not cross
fostered (Table 1). A comparable analysis, in which we regressed
cross-fostered birds’ breeding-colony ranks against those of their
foster parents (rearing colony), yielded significantly negative
heritabilities (Table 1). This finding indicated an inverse rela-
tionship between cross-fostered birds’ breeding- and rearing-
colony ranks and illustrates that these birds actively avoided
breeding colonies of rank similar to those in which they were
fostered. These analyses (Fig. 2; Table 1) show that regardless of
the colony size in which they were reared, cliff swallows chose
breeding colonies that ranked approximately the same in size as
their colony of birth.

Discussion

To show that choice of group size in cliff swallows is genetically
based, we must rule out common environmental effects, mater-
nal effects, and philopatry as explanations for our results. The
cross-fostering experiment removed environmental effects by
placing some birds in a different environment (foster colony)
and comparing their choice of colony size to that of their siblings
raised in the birth colony. We found that fostered birds chose
colony sizes in the same manner as their genetic relatives despite
the different rearing environments. Although fostering freshly
laid eggs might have been better than fostering newly hatched
nestlings to remove any potential environmental effect com-
pletely, we were constrained by the need to permanently mark
(i.e., band) individuals before they mixed with their foster nest
mates. It seems unlikely that newly hatched nestlings would be
influenced by environmental effects (e.g., ambient noise) before
fostering, given the enclosed nature of the cliff swallow’s nest and
the fact that no imprinting on social system for newly hatched
altricial birds is known.

We also found little evidence for maternal effects. Single-
parent regressions for both sexes revealed higher heritability
with fathers than with mothers (Table 1). The opposite would
have been expected if maternal effects had been important.
Although the observed difference could in part reflect different

P = 0.05). Atwo-way ANOVA revealed that birth-rearing colony combination
had a significant effect on breeding-colony rank (F = 10.85, P < 0.001), but
neither sex alone (F = 0.05, P = 0.82) nor an interaction between sex and
birth—rearing colony (F = 0.69, P = 0.72) was significant.
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parental histories for male parents versus female parents among
the individuals used in the single-parent analyses, there is
certainly no evidence that mother-offspring heritabilities were
inflated enough, relative to father—offspring heritabilities, for
maternal effects to be important.

The most likely alternative explanation for our results is natal
philopatry. An association between parental and offspring
breeding-colony ranks might occur if both classes of birds simply
returned to the same colony site in successive years and colony
size at a given site remained roughly similar from year to year.
Although actual colony sizes at a site were not significantly
repeatable between years (r; = 0.113, P = 0.30; intraclass
correlation), yearly ranks at a site were significantly correlated
(r1 = 0.838, P < 0.001). Therefore, the same site tended to rank
roughly the same between years, even though actual colony size
might have differed from year to year.

However, two kinds of evidence suggest that philopatry does
not explain our results. First, we found a similar heritability in
choice of colony-size rank when confining the analysis only to
dispersing nonphilopatric birds that used nonnatal sites (Fig. 1;
Table 1). The estimated heritability for dispersing birds suggests
that colony rank often figures in their decision. Second, had
philopatry alone accounted for these results, cross-fostered birds
should have returned to the site of their foster colony. That their
later colony-size choice matched instead that of their siblings
raised at another site indicates that these birds were sensitive to
differences in colony size per se and were not simply philopatric
to their place of rearing.

The spatial distributions of birds in the cross-fostering exper-
iment bolsters this conclusion. Both cross-fostered birds and
their siblings raised in the birth colony returned to the same
general vicinity and had the same set of colony sites to choose
from as breeders. Thus, even if there had been a spatial
autocorrelation of colony size among adjacent sites that might
have caused dispersers to settle in colonies of size similar to their
birth, this scenario could not explain the observed differences in
preferences for group sizes in the cross-fostering experiment
(Fig. 2), because the settlement distances indicated that both
classes of birds were choosing from the same set of colonies.
Furthermore, because most of these birds returned to the same
cluster of colonies (which happened to be the largest, containing
25 colony sites), both classes of birds had a relatively large
number of colonies from which to choose.

A heritable basis to choice of group size could be established
through genetic correlations between cognitive decision pro-
cesses and morphological, behavioral, or physiological attributes,
the performance of which varies with social environment. For
example, within colonies some cliff swallows seem to have
greater infestations of blood-feeding ectoparasites and are more
negatively affected by them than other birds (15, 36), possibly
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reflecting degrees of genetically based resistance and suscepti-
bility (37-40). Selection will favor susceptible individuals who
are sensitive to group size in making settlement decisions and
choose smaller colonies that have lower average ectoparasite
loads (15). Resistant individuals who choose large colonies (and
can tolerate more ectoparasitism) would be favored over resis-
tant birds who choose small colonies, because the former receive
greater net benefits from the social advantages (foraging, pred-
ator avoidance) of large colonies. Similarly, birds that are prone
to high levels of stress hormones (e.g., corticosterone) in re-
sponse to stressful social environments of large (or small)
colonies would be selected to choose group sizes that minimize
their stress response, especially if that stress response impairs
immune function or is otherwise disadvantageous (41). Because
no single colony size is best for all birds, relatively high additive
genetic variance for colony-size choice can be maintained.

Cliff swallows probably do not choose breeding colonies
strictly on the basis of genetic predisposition to large or small
groups. Colony choice is a complex process that may also include
assessment of one’s own breeding performance and that of
conspecifics, attraction to conspecifics, and assessment of local
resource availability (15, 27, 42). These factors interact with
genetically based choices of group size and probably account in
part for the cases where birds used colony sizes unlike those of
their birth. However, the existence of moderate heritable vari-
ation for choice of group size in cliff swallows helps to maintain
a range of colony sizes.

Across all analyses involving birds not cross fostered, herita-
bility for choice of breeding-colony size averaged 0.480. This
heritability is higher than the mean heritability reported for
behavioral traits in a tabulation of 105 estimates (0.304; ref. 43)
and in other studies of complex behavior in vertebrates such as
foraging-patch choice, migratory tendency, and dispersal dis-
tance (44-46). To our knowledge, this study is the first in
vertebrates to report a strong genetic basis to the type of social
system chosen. Ecological explanations for group-size variation,
based on local resource availability or habitat characteristics,
should perhaps consider that some animals may be inherently
predisposed to occupy groups of particular sizes.
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